975 resultados para Molecular diagnostic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular diagnosis is the application of molecular biology techniques and knowledge of the molecular mechanisms of disease to diagnosis, prognostication and treatment of diseases. Although it is not widely used in routine molecular cytological practice, some examples are presented here of the application of molecular techniques to the routine cytopathological diagnosis of solid tumours and lymphoreticular malignancies. The term 'molecular diagnostic cytopathology' is proposed to define the application of molecular diagnosis to cytopathology, and the challenges of the introduction of molecular diagnosis into routine diagnostic histopathology and cytopathology are discussed. Finally, the importance of a combined morphological, immunophenotypic and molecular approach to maintain the diagnostic pathologist at the heart of the clinical decision-making process is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to validate the application of a commercially available multiplex reverse transcription polymerase chain reaction (RT-PCR) assay [He-mavision-7 System] for the seven most common leukemia translocations for routine molecular diagnostic hematopathology practice. A total of 98 samples, comprising four groups, were evaluated: Group 1, 16 diagnostic samples molecularly positive by our existing laboratory-developed assays for PML-RARalpha/t (15; 17) or BCR-ABL/t (9;22); Group 2, 51 diagnostic samples negative by our laboratory-developed assays for PML-RARalpha/t (15;17) or BCR-ABL/t (9;22); Group 3, 21 prospectively analyzed diagnostic cases, without prior molecular studies; and Group 4, 10 minimal residual disease (MRD) samples. Analysis of the two previously studied cohorts (Groups 1 and 2) confirmed the diagnostic sensitivity and specificity of the multiplex assay with regard to these two translocations. Additionally, however, in the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holsback L., Pena H.F.J., Ragozo A., Lopes E. G., Gennari S. M. & Soares R. M. 2012. Serologic and molecular diagnostic and bioassay in mice for detection of Toxoplasma gondii in free range chickens from Pantanal of Mato Grosso do Sul. Pesquisa Veterinaria Brasileira 32(8): 721-726. Setor de Veterinaria e Producao Animal, Universidade Estadual do Norte do Parana, Campus Luiz Meneghel, Rodovia BR 369 Km 54, Bandeirantes, PR 86360-000, Brazil. E-mail: lhsfertonani@uenp.edu.br The aim of this study was to investigate the occurrence of Toxoplasma gondii and compare the results obtained in the Modified Agglutination Test (MAT), Polimerase Chain Reaction (PCR) and bioassay in mice. In order to accomplish this, 40 free-range chickens from eight farms in neighboring areas to the Pantanal in Nhecolandia, Mato Grosso do Sul, were euthanized and blood samples, brain and heart were collected. The occurrence of anti-T. gondii antibodies found in chickens was 67.5% (27 samples), considering as a cutoff point the dilution 1:5. Among the samples analyzed, 7 (25.9%) were positive in the dilution 1: 5, 3 (11.1%) in 1: 10, 2 (7.4%) in 1: 20, 3 (11.1%) in 1: 320, 1 (3.7%) in 1: 640, 3 (11.1%) in 1: 1280, 2 (7.4%) in 1: 2560, 4 (14.8%) in 1: 5120 and 2 (7.4%) in 1: 10.240. From the mixture of tissue samples (brain and heart) from the chickens analyzed, 16 (40%) presented electrophoretic bands compatible with T. gondii by PCR (gene B1). In the comparison of techniques, 59.26% positivity in PCR was revealed among animals that were seropositive in MAT (cutoff 1: 5). From 141 inoculated mice, six (4.44%) died of acute toxoplasmosis between 15 and 23 days after inoculation. Surviving mice were sacrificed at 74 days after inoculation, and a total of 28 cysts were found in the brains of 10 distinct groups. From the seropositive hens, 27 bioassays were performed and 11 (40.7%) isolates were obtained. A greater number of isolations happened in mice that were inoculated with tissues from chickens that had high titers for anti-T. gondii antibodies. Chronic infection in mice was observed in nine groups (33.3%) from five different properties. Among the surviving mice, 25.6% were positive for T. gondii in MAT (1: 25). From mice positive in PCR, 87.5% were also positive in MAT. Among the PCR-negative mice, 5.2% were positive for T. gondii in MAT. It can be concluded through this study that the occurrence of infecton by T. gondii in the rural properties studied was high, that PCR directed to gene B1 does not confirm the viability of the parasite, but it can be used as a screening method for the selection of chickens infected by T. gondii, that the animals with titer greater than 10 must be prioritized for the selection of animals for bioassay, since for them, the chances of isolating the parasite are greater and that seroconversion in experimentally infected mice is not a good indicator for isolating the agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc-SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular diagnostic tests, based on the detection and identification of nucleic acids in human biological samples, are increasingly employed in the diagnosis of infectious diseases and may be of future benefit to CF microbiology services. Our growing understanding of the complex polymicrobial nature of CF airway infection has highlighted current and likely future shortcomings in standard diagnostic practices. Failure to detect fastidious or slow growing microbes and misidentification of newly emerging pathogens could potentially be addressed using culture-independent molecular technologies with high target specificity. This review considers existing molecular diagnostic tests in the context of the key requirements for an envisaged CF microbiology focussed assay. The issues of assay speed, throughput, detection of multiple pathogens, data interpretation and antimicrobial susceptibility testing are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. While many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations is considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future, play an increasing role in the molecular diagnosis of MPN. 

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is a widely available and highly utilised tool in diagnostic histopathology and is used to guide treatment options as well as provide prognostic information. IHC is subjected to qualitative and subjective assessment, which has been criticised for a lack of stringency, while PCR-based molecular diagnostic validations by comparison are regarded as very rigorous. It is essential that IHC tests are validated through evidence-based procedures. With the move to ISO15189 (2012), not just of the accuracy, specificity and reproducibility of each test need to be determined and managed, but also the degree of uncertainty and the delivery of such tests. The recent update to ISO 15189 (2012) states that it is appropriate to consider the potential uncertainty of measurement of the value obtained in the laboratory and how that may impact on prognostic or predictive thresholds. In order to highlight the problems surrounding IHC validity, we reviewed the measurement of Ki67and p53 in the literature. Both of these biomarkers have been incorporated into clinical care by pathology laboratories worldwide. The variation seen appears excessive even when measuring centrally stained slides from the same cases. We therefore propose in this paper to establish the basis on which IHC laboratories can bring the same level of robust validation seen in the molecular pathology laboratories and the principles applied to all routine IHC tests.